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NORMALIZED WRIGHT FUNCTIONS WITH NEGATIVE COEFFICIENTS

AND SOME OF THEIR INTEGRAL TRANSFORMS

N. MUSTAFA1, O. ALTINTAŞ2

Abstract. The purpose of the present paper is to investigate some characterization for the

normalized Wright functions to be in the subclass T (α, β)(α ∈ [0, 1) , β ∈ [0, 1)) of analytic

functions in the open unit disk. Several sufficient conditions were obtained for the parameters

of the normalized form of the Wright functions to be in this class. Some geometric properties of

integral transforms involving normalized Wright functions are also studied. The results obtained

here are new and their usefulness is depicted by deducing several interesting corollaries and

examples.
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1. Introduction

It is well known that the special functions play an important role in the geometric function

theory. It is also well known that the application area of the special functions is not limited

to the theory of geometric functions. The special functions have wide range of applications in

many problems as well as in other branches of mathematics and applied sciences.

The Wright function Wλ,µ(z) is defined by the series

Wλ,µ(z) =

∞∑
n=0

1

Γ(λn+ µ)

zn

n!
, λ > −1, µ, z ∈ C. (1)

This series is absolutely convergent in C, when λ > −1 and absolutely convergent in open unit

disk for λ = −1. Furthermore, for λ > −1, the Wright function is an entire function. The

Wright function Wλ,µ(z) was introduced by Wright in [22], and has appeared for the first time

in the case λ > 0 in connection with his investigations in the asymptotic theory of the partitions.

Later on, many other applications have been found, first of all, in the Mikusinski operational

calculus and in the theory of integral transforms of Hankel type. Furthermore, extending the

methods of Lie groups in the partial differential equations to the partial differential equations of

the fractional order, it was shown that some of the group-invariant solutions of these equations

can be given in terms of the Wright function.

Recently, this function has appeared in the solution of the partial differential equations of

the fractional order, it was found that the corresponding Green functions can be represented

in terms of the Wright function (see [14], [19]). There are papers devoted to the applications
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of the Wright function in the partial differential equation of the fractional order extending the

classical diffusion and wave equations. In [11] Mainardi has obtained the result for a fractional

diffusion wave equation in terms of the fractional Green function involving the Wright function.

The scale-variant solutions of the some partial differential equations of the fractional order were

obtained in terms of the special cases of the generalized Wright function by Buckwar and Luchko

[5] and Luchko and Gorenflo [10].

If λ is a positive rational number, then the Wright function Wλ,µ(z) can be represented

in terms of the more familiar generalized hypergeometric function (see [8, Section 2.1]). In

particular, when λ = 1 and µ = ν + 1, the functions W1,ν+1(−z2/4) are expressed in terms of

the Bessel functions given as follows:

Jν(z) =
(z
2

)ν
W1,ν+1

(
−z2

4

)
=

∞∑
n=0

(−1)n

n!

(z/2)2n+ν

Γ(n+ ν + 1)
.

Furthermore, the function Wλ,ν+1(−z) ≡ Jλ
ν (z) (λ > 0, ν > −1) is known as the generalized

Bessel function (misnamed also as the Bessel-Maitland function). Also, the Wright function

generalizes various simple functions like the Array function, Wittaker function, (Wright-type)

entire auxiliary functions (see for details [8]).

Several researchers studied classes of analytic functions involving special functions F ⊂ A,

to find different conditions such that the members of F have certain geometric properties such

as starlikeness or convexity in the open unit disk. There is an extensive literature dealing with

geometric properties of different types of the hypergeometric functions, especially for generalized

Gaussian, Kummer and generalized hypergeometric, Mittag-Leffler type, Bessel functions and

harmonic preinvex, and harmonic univalent functions with varying arguments defined by using

Salagean integral operator ([4] - [18], [21]).

2. Preliminaries

Let T be the class of analytic in the open unit disk U = {z ∈ C : |z| < 1} functions f(z),

normalized by f(0) = 0 = f ′(0)− 1 of the form

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0. (2)

We denote by TS∗(α) and TC(α) the subclasses of T consisting of the functions which are,

respectively, starlike or convex of order α (α ∈ [0, 1)) in the open unit disk U . From the

definition, we have (see for details [6]-[20])

TS∗(α) =

{
f ∈ T : ℜ(zf

′(z)

f(z)
) > α, z ∈ U

}
, α ∈ [0, 1) (3)

and

TC(α) =

{
f ∈ T : ℜ(1 + zf ′′(z)

f ′(z)
) > α, z ∈ U

}
, α ∈ [0, 1) . (4)

An interesting unification of the function classes TS∗(α) and TC(α) is provided by the class

T (α, β) of functions f ∈ T , which also satisfies the following condition:

ℜ
{

zf ′(z) + βz2f ′′(z)

βzf ′(z) + (1− β)f(z)

}
> α, z ∈ U, 0 ≤ α < 1, 0 ≤ β ≤ 1.
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Thus,

T (α, β) =

{
f ∈ T : ℜ

(
zf ′(z) + βz2f ′′(z)

βzf ′(z) + (1− β)f(z)

)
> α, z ∈ U

}
, (5)

0 ≤ α < 1, 0 ≤ β ≤ 1.

The class T (α, β) was investigated by Altintaş et al. [2] and [3] (in a more general way Tn(p, α, β))

and (subsequently) by Irmak et al. [9]. In particular, the class Tn(1, α, β) was considered earlier

by Altintaş [1].

In special case for β = 0 and β = 1, we have

T (α, 0) = TS∗(α) and T (α, 1) = TC(α) (6)

in terms of the simpler classes TS∗(α) and TC(α), defined by (3) and (4), respectively.

Note that, the Wright function Wλ,µ(z) defined by (1) does not belong to the class T . Thus,

it is natural to consider the following two kinds of normalization of the Wright function:

W1(λ, µ; z) = 2z − Γ(µ)zWλ,µ(z) = 2z −
∞∑
n=0

Γ(µ)

Γ(λn+ µ)

zn+1

n!
,

z ∈ U, λ > −1, µ > 0

and

W2(λ, µ; z) = 2z − Γ(λ+ µ)

[
Wλ,µ(z)−

1

Γ(µ)

]
= 2z −

∞∑
n=0

Γ(λ+ µ)

Γ(λn+ λ+ µ)

zn+1

(n+ 1)!
,

z ∈ U, λ > −1, λ+ µ > 0.

From this, we can easily write:

W1(λ, µ; z) = z −
∞∑
n=2

Γ(µ)

Γ(λ(n− 1) + µ)

zn

(n− 1)!
, z ∈ U, λ > −1, µ > 0, (7)

W2(λ, µ; z) = z −
∞∑
n=2

Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

zn

n!
, z ∈ U, λ > −1, λ+ µ > 0. (8)

Furthermore, we observe that the normalized Wright functions W1(λ, µ; z) and W2(λ, µ; z) are

satisfying the following relations:

λz(W1(λ, µ; z))
′ = (µ− 1)W1(λ, µ− 1; z) + (λ− µ+ 1)W1(λ, µ; z), (9)

λz(W2(λ, µ; z))
′ = (λ+ µ− 1)W2(λ, µ− 1; z) + (1− µ)W2(λ, µ; z), (10)

z(W2(λ, µ; z))
′ =W1(λ, λ+ µ; z). (11)

The main aim of the present paper is to derive several sufficient conditions for the normalized

Wright functions W1(λ, µ; z) and W2(λ, µ; z), and for the integral transforms involving this

normalized Wright functions to be in the class T (α, β) (α ∈ [0, 1) , β ∈ [0, 1)).

In our present investigation, we will need of Lemma 2.1 below.

Lemma 2.1. (see [2, p.10, Theorem 1]) Let the function f ∈ T be defined by (2). Then, the

function f(z) is in the class T (α, β) (α ∈ [0, 1) , β ∈ [0, 1)) if and only if

∞∑
n=2

(n− α) [β(n− 1) + 1] an ≤ 1− α. (12)
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3. Sufficient conditions for the normalized Wright functions

In this section, we will give some sufficient conditions for the normalized Wright functions

W1(λ, µ; z) and W2(λ, µ; z), defined by (7) and (8) to be in the class T (α, β).

Theorem 3.1. Let λ ≥ 1, µ ≥ µ0 = 0.462 and the following condition is satisfied:

(1− α)(2µ+ 1)(µ+ 1)−
{
(1− α)(µ+ 1)2 + [1 + (2− α)β] (µ+ 1) + β)

}
e

1
µ+1 ≥ 0.

Then, the normalized Wright function W1(λ, µ; z) belongs to the class T (α, β) (α ∈ [0, 1) , β ∈
[0, 1)).

Proof. Since

W1(λ, µ; z) = z −
∞∑
n=2

Γ(µ)

Γ((n− 1)λ+ µ)

zn

(n− 1)!

by virtue of Lemma 2.1, it suffices to show that

∞∑
n=2

(n− α)(β(n− 1) + 1)
Γ(µ)

Γ((n− 1)λ+ µ)

1

(n− 1)!
≤ 1− α. (13)

Let

L1(λ, µ;α, β) =
∞∑
n=2

(n− α)(β(n− 1) + 1)
Γ(µ)

Γ((n− 1)λ+ µ)

1

(n− 1)!
.

We can easily write:

(n− α)(β(n− 1) + 1) = β(n− 2)(n− 1) + (1 + (2− α)β)(n− 1) + (1− α).

In that case, by simple computation, we obtain

L1(λ, µ;α, β) =
∞∑
n=3

β

(n− 3)!

Γ(µ)

Γ((n− 1)λ+ µ)

+

∞∑
n=2

1 + (2− α)β

(n− 2)!

Γ(µ)

Γ((n− 1)λ+ µ)

+

∞∑
n=2

1− α

(n− 1)!

Γ(µ)

Γ((n− 1)λ+ µ)
.

Under the hypothesis of the theorem, for every n ∈ N2 := N\{1} = {2, 3, ...} the inequality

Γ(n−1+µ) ≤ Γ((n−1)λ+µ) holds true. Therefore, since Γ(n−1+µ) = Γ(µ) (µ)n−1 , we have

Γ(µ)

Γ(λ(n− 1) + µ)
≤ 1

(µ)n−1
, n ∈ N2. (14)

Here, (µ)n = Γ(n+µ)
Γ(µ) = µ(µ+ 1) · · · (µ+ n− 1), (µ)0 = 1 is Pochhammer (or Appell) symbol,

defined in terms of Euler gamma function.

Using (14), we have

L1(λ, µ;α, β) ≤
∞∑
n=3

β

(n− 3)!(µ)n−1
+

∞∑
n=2

1 + (2− α)β

(n− 2)!(µ)n−1
+

∞∑
n=2

1− α

(n− 1)!(µ)n−1
.

Also, the inequality (µ)n−1 = µ(µ+ 1) · · · (µ+ n− 2) ≥ µ(µ+ 1)n−2, n ∈ N2 is clear, which

is equivalent to
1

(µ)n−1
≤ 1

µ(µ+ 1)n−2
, n ∈ N2. (15)



194 TWMS J. PURE APPL. MATH., V.9 , N.2, 2018

Using (15), we obtain

L1(λ, µ;α, β) ≤
∞∑
n=3

β

(n− 3)!

1

µ(µ+ 1)n−2
+

∞∑
n=2

1 + (2− α)β

(n− 2)!

1

µ(µ+ 1)n−2

+

∞∑
n=2

1− α

(n− 1)!

1

µ(µ+ 1)n−2

=

{
β

µ(µ+ 1)
+

1 + (2− α)β

µ
+

(1− α)(µ+ 1)

µ

}
e

1
µ+1

−(1− α)(µ+ 1)

µ
.

In this case, (13) holds true if the following condition is satisfied:

{
β

µ(µ+ 1)
+

1 + (2− α)β

µ
+

(1− α)(µ+ 1)

µ

}
e

1
µ+1 − (1− α)(µ+ 1)

µ
≤ 1− α,

which follows that

(1− α)(2µ+ 1)(µ+ 1)−
{
(1− α)(µ+ 1)2 + [1 + (2− α)β](µ+ 1) + β

}
e

1
µ+1 ≥ 0.

Thus, the proof of Theorem 3.1 is completed. �

By setting β = 0 in Theorem 3.1 and using the first relationship in (6), we arrive at the

following corollary.

Corollary 3.1. The normalized Wright functionW1(λ, µ; z) belongs to the class TS∗(α) (α ∈ [0, 1))

if λ ≥ 1, µ ≥ µ0 = 0.462 and the following condition is satisfied:

(1− α)(2µ+ 1)− [(1− α)(µ+ 1) + 1] e
1

µ+1 ≥ 0.

By taking α = 0 in Corollary 3.1, we obtain the following corollary.

Corollary 3.2. The normalized Wright function W1(λ, µ; z) belongs to the class TS∗ if λ ≥ 1

and µ ≥ x0. Here, x0 = 2.4898 is the numerical root of the equation

2x+ 1− (x+ 2)e
1

x+1 = 0.

Proof. Let ϕ(x) = 2x+ 1− (2 + x)e1/(x+1), x > 0. By simple computation, we get

ϕ′(x) = 2− x2 + x− 1

(x+ 1)2
e

1
x+1 .

As it is seen from the graphic of this function ϕ′(x) > 0 (see Figure 1a).
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Figure 1a. Graphic of y = ϕ′(x) = 2− x2+x−1
(x+1)2

e
1

x+1 .

Thus, the function ϕ(x) is an increasing function.

Also, from the graphic of the function ϕ(x) or from the computational solution of the equation

2x+ 1− (x+ 2)e
1

x+1 = 0,

we see that x0 = 2.4898 is a numerical root of this equation (see Figure 1b and Equation 1).

Figure 1b. Graphic of y = ϕ(x) = 2x+ 1− (x+ 2)e
1

x+1 .

Equation 1. 2x+ 1− (x+ 2)e
1

x+1 = 0. Computational numerical solution is: x0 = 2.4898.

Therefore, 2µ+ 1− (µ+ 2)e1/(µ+1) ≥ 0 for every µ ≥ x0.

Thus, the proof of Corollary 3.2 is completed. �

By setting β = 1 in Theorem 3.1 and using the second relationship in (6), we arrive at the

following corollary.
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Corollary 3.3. The normalized Wright functionW1(λ, µ; z) belongs to the class TC(α) (α ∈ [0, 1))

if λ ≥ 1, µ ≥ µ0 = 0.462 and the following condition is satisfied:

(1− α)(µ+ 1)(2µ+ 1)−
[
(1− α)(µ+ 1)2 + (3− α)(µ+ 1) + 1

]
e

1
µ+1 ≥ 0.

By taking α = 0 in Corollary 3.3, we obtain the following corollary.

Corollary 3.4. The normalized Wright function W1(λ, µ; z) belongs to the class TC if λ ≥ 1

and µ ≥ x1. Here, x1 = 4.8523 is the numerical root of the equation

2x2 + 3x+ 1− (x2 + 5x+ 5)e
1

x+1 = 0.

Proof. Let ψ(x) = 2x2 + 3x+ 1− (x2 + 5x+ 5)e
1

x+1 , x > 0. By simple computation, we get

ψ′(x) = 4x+ 3− x(2x2 + 8x+ 7)

(x+ 1)2
e

1
x+1 .

From the graphic of this function, we exact can see that ψ′(x) > 0 for each x > 1.25 (see

Figure 2a).

Figure 2a. Graphic of y = ψ′(x) = 4x+ 3− x(2x2+8x+7)
(x+1)2

e
1

x+1 .

Hence, the function ψ(x) is an increasing function for x > 1.25.

Also, as it is seen from the graphic of the function ψ(x) or from the computational solution

of the equation

2x2 + 3x+ 1− (x2 + 5x+ 5)e
1

x+1 = 0

x1 = 4.8523 is a numerical root of this equation (see Figure 2b and Equation 2).
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Figure 2b. Graphic of y = ψ(x) = 2x2 + 3x+ 1− (x2 + 5x+ 5)e
1

x+1 .

Equation 2. 2x2 + 3x+ 1− (x2 + 5x+ 5)e
1

x+1 = 0. Computational numerical solution is:

x1 = 4.8523.

Therefore, 2µ2 + 3µ+ 1− (µ2 + 5µ+ 5)e
1

µ+1 ≥ 0 for every µ ≥ x1.

Thus, the proof of Corollary 3.4 is completed. �
Theorem 3.2. Let λ ≥ 1, µ > 0 and the following condition is satisfied:

(1− α)(λ+ µ) + (λ+ µ+ 1) [(1− (1− β)α)(λ+ µ+ 2) + (1− αβ)]

−
[
(1− (1− β)α)(λ+ µ+ 1)2 + (1− αβ)(λ+ µ+ 1) + β

]
e

1
λ+µ+1 ≥ 0.

Then, the normalized Wright function W2(λ, µ; z) belongs to the class T (α, β) (α ∈ [0, 1) , β ∈
[0, 1)).

Proof. Since

W2(λ, µ; z) = z −
∞∑
n=2

Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

zn

n!

by virtue of Lemma 2.1, it suffices to show that
∞∑
n=2

(n− α)(β(n− 1) + 1)
Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

1

n!
≤ 1− α. (16)

Let

L2(λ, µ;α, β) =

∞∑
n=2

(n− α)(β(n− 1) + 1)
Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

1

n!
.

We can easily write: (n − α)(β(n − 1) + 1) = βn(n − 1) + (1 − αβ)n − (1 − β)α. In that case,

by simple computation, we have

L2(λ, µ;α, β) =
∞∑
n=2

β

(n− 2)!

Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

+

∞∑
n=2

(
1− αβ − 1

n

)
1

(n− 1)!

Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

+

∞∑
n=2

1− (1− β)α

n!

Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)
.
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Using (14) and (15), with µ ≡ λ+ µ, we obtain

L2(λ, µ;α, β) ≤
∞∑
n=2

β

(n− 2)!

1

(λ+ µ)(λ+ µ+ 1)n−2

+

∞∑
n=2

1− αβ

(n− 1)!

1

(λ+ µ)(λ+ µ+ 1)n−2

+
∞∑
n=2

1− (1− β)α

n!

1

(λ+ µ)(λ+ µ+ 1)n−2

=
β

λ+ µ
e

1
λ+µ+1 +

(1− αβ)(λ+ µ+ 1)

λ+ µ
(e

1
λ+µ+1 − 1)

+
(1− (1− β)α)(λ+ µ+ 1)2

λ+ µ
(e

1
λ+µ+1 − 1

λ+ µ+ 1
− 1).

Thus, (16) holds true if the following condition is satisfied:[
(1− (1− β)α)(λ+ µ+ 1)2

λ+ µ
+

(1− αβ)(λ+ µ+ 1)

λ+ µ
+

β

λ+ µ

]
e

1
λ+µ+1

−λ+ µ+ 1

λ+ µ
[(1− (1− β)α)(λ+ µ+ 2) + (1− αβ)] ≤ 1− α.

This evidently completes the proof of Theorem 3.2. �

By setting β = 0 in Theorem 3.2 and using the first relationship in (6), we arrive at the

following corollary.

Corollary 3.5. The normalized Wright functionW2(λ, µ; z) belongs to the class TS∗(α) (α ∈ [0, 1))

if λ ≥ 1, µ > 0 and the following condition is satisfied:

(1− α) [(λ+ µ+ 1) (λ+ µ+ 2)+λ+ µ] + λ+ µ+ 1

− [(1− α) (λ+ µ+ 1) + 1] (λ+ µ+ 1)e
1

µ+1 ≥ 0.

By taking α = 0 in Corollary 3.5, we obtain the following corollary.

Corollary 3.6. The normalized Wright function W2(λ, µ; z) belongs to the class TS∗ if λ ≥ 1

and λ+ µ ≥ x2. Here, x2 = 1.7703 is the numerical root of the equation

x2 + 5x+ 3− (x2 + 3x+ 2)e
1

x+1 = 0.

Proof. Let h(x) = x2 + 5x+ 3− (x2 + 3x+ 2)e
1

x+1 , x > 0. By simple computation, we get

h′(x) = 2x+ 5− 2x2 + 4x+ 1

x+ 1
e

1
x+1 .

As it is seen from the graphic of this function h′(x) > 0 (see Figure 3a).
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Figure 3a. Graphic of y = h′(x) = 2x+ 5− 2x2+4x+1
x+1 e

1
x+1 .

Thus, the function h(x) is an increasing function.

Also, from the graphic of the function h(x) or from the computational solution of the equation

x2 + 5x+ 3− (x2 + 3x+ 2)e
1

x+1 = 0,

we see that x2 = 1.7703 is a numerical root of this equation (see Figure 3b and Equation 3).

Figure 3b. Graphic of y = h(x) = x2 + 5x+ 3− (x2 + 3x+ 2)e
1

x+1 .

Equation 3. x2 + 5x+ 3− (x2 + 3x+ 2)e
1

x+1 = 0. Computational numerical solution is:

x2 = 1.7703.

Therefore,

2(λ+ µ) + (λ+ µ+ 1)(λ+ µ+ 2) + 1− (λ+ µ+ 1)(λ+ µ+ 2)e
1

λ+µ+1 ≥ 0

for every λ+ µ ≥ x2.

Thus, the proof of Corollary 3.6 is completed. �
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By setting β = 1 in Theorem 3.2 and using the second relationship in (6), we arrive at the

following corollary.

Corollary 3.7. The normalized Wright functionW2(λ, µ; z) belongs to the class TC(α) (α ∈ [0, 1))

if λ ≥ 1, µ > 0 and the following condition is satisfied:

(1− α) [2(λ+ µ) + 1] + (λ+ µ+ 1)(λ+ µ+ 2)

−
[
(1− α)(λ+ µ+ 1) + (λ+ µ+ 1)2 + 1

]
e

1
λ+µ+1 ≥ 0.

By taking α = 0 in Corollary 3.7, we obtain the following corollary.

Corollary 3.8. The normalized Wright function W2(λ, µ; z) belongs to the class TC if λ ≥ 1

and λ+ µ ≥ x3. Here, x3 = 2.9689 is the numerical root of the equation

x2 + 5x+ 3− (x2 + 3x+ 3)e
1

x+1 = 0. (17)

Proof. Let ω(x) = x2 + 5x+ 3− (x2 + 3x+ 3)e
1

x+1 , x > 0. By simple computation, we get

ω′(x) = 2x+ 5− x(2x2 + 6x+ 5)

(x+ 1)2
e

1
x+1 .

From the graphic of this function, we see that ω′(x) > 0 (see Figure 4a).

Figure 4a. Graphic of y = ω′(x) = 2x+ 5− x(2x2+6x+5)
(x+1)2

e
1

x+1 .

Hence, the function ω(x) is an increasing function.

Also, as it is seen from the graphic of the function ω(x) or from the computational solution

of the equation

x2 + 5x+ 3− (x2 + 3x+ 3)e
1

x+1 = 0

x3 = 2.9689 is a numerical root of this equation (see Figure 4b and Equation 4).
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Figure 4b. Graphic of y = ω(x) = x2 + 5x+ 3− (x2 + 3x+ 3)e
1

x+1 .

Equation 4. x2 + 5x+ 3− (x2 + 3x+ 3)e
1

x+1 = 0. Computational numerical solution is:

x3 = 2.9686.

Therefore,

(λ+ µ)2 + 5(λ+ µ) + 3−
[
(λ+ µ)2 + 3(λ+ µ) + 3

]
e

1
λ+µ+1 ≥ 0

for every λ+ µ ≥ x3.

Thus, the proof of Corollary 3.8 is completed. �

4. Sufficient conditions for the integrals involving normalized Wright

functions

In this section, some sufficient conditions for the integrals involving the normalized Wright

functions W1(λ, µ; z) and W2(λ, µ; z) are given.

Let

G1(λ, µ; z) =

z∫
0

W1(λ, µ; t)

t
dt and G2(λ, µ; z) =

z∫
0

W2(λ, µ; t)

t
dt, z ∈ U, (18)

where W1(λ, µ; z) and W2(λ, µ; z) are functions, defined by (7) and (8), respectively. Note that

G1, G2 ∈ T .

In the next theorems, we give sufficient conditions so that G1(λ, µ; z) and G2(λ, µ; z) are in

the class T (α, β).

Theorem 4.1. Let λ ≥ 1, µ ≥ µ0 = 0.462 and the following condition is satisfied:

(1− α)µ+ [(1− (1− β)α)(µ+ 2) + 1− αβ] (µ+ 1)

−
[
(1− (1− β)α)(µ+ 1)2 + (1− αβ)(µ+ 1) + β

]
e

1
µ+1 ≥ 0. (19)

Then, the function G1(λ, µ; z) belongs to the class T (α, β) (α ∈ [0, 1) , β ∈ [0, 1)).

Proof. Our proof of Theorem 4.1 is similar of that of Theorem 3.2. Indeed, from the definition

of function G1(λ, µ; z), we can easily see that

G1(λ, µ; z) = z −
∞∑
n=2

Γ(µ)

Γ(λ(n− 1) + µ)

zn

n!
=W2(λ, µ− λ; z).
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Therefore, the details of the proof of Theorem 4.1 may be omitted. �

By setting β = 0 in Theorem 4.1 and using the first relationship in (6), we arrive at the

following corollary.

Corollary 4.1. The function G1(λ, µ; z) belongs to the class TS∗(α) (α ∈ [0, 1)) if λ ≥ 1,

µ ≥ µ0 = 0.462 and the following condition is satisfied:

(1− α)
[
(µ+ 1)2 + 2µ+ 1

]
+ µ+ 1− [(1− α)(µ+ 1) + 1] (µ+ 1)e

1
µ+1 ≥ 0.

By taking α = 0 in Corollary 4.1, we obtain the following corollary.

Corollary 4.2. The function G1(λ, µ; z) belongs to the class TS∗ if λ ≥ 1 and µ ≥ x2. Here,

x2 = 1.7703 is the numerical root of the equation

x2 + 5x+ 3− (x2 + 3x+ 2)e
1

x+1 = 0.

Proof. The proof of Corollary 4.2 is very similar of the proof of Corollary 3.6. Therefore, the

details of the proof of Corollary 4.1 may be omitted. �

By setting β = 1 in Theorem 4.1, and using the second relationship in (6), we arrive at the

following corollary.

Corollary 4.3. The function G1(λ, µ; z) belongs to the class TC(α) (α ∈ [0, 1)) if λ ≥ 1, µ ≥
µ0 = 0.462 and the following condition is satisfied:

(1− α) (2µ+ 1) + (µ+ 1)(µ+ 2)− [(µ+ 2− α) (µ+ 1) + 1] e
1

µ+1 ≥ 0.

By taking α = 0 in Corollary 4.3, we obtain the following corollary.

Corollary 4.4. Let λ ≥ 1 and µ ≥ x3, where x3 = 2.9689 is the numerical root of the equation

(17), then G1 ∈ TC.

Proof. The proof of Corollary 4.4 is the same of the proof of Corollary 3.8. �

Theorem 4.2. Let λ ≥ 1, µ > 0 and the following condition is satisfied:

(1− α)(λ+ µ) + (2− (1 + β)α) (λ+ µ+ 1)(λ+ µ+ 2) + (λ+ µ+ 1)β

− [(2− (1 + β)α) (λ+ µ+ 1) + β] (λ+ µ+ 1)e
1

λ+µ+1 ≥ 0.
(20)

Then, the function G2(λ, µ; z) belongs to the class T (α, β) (α ∈ [0, 1) , β ∈ [0, 1)).

Proof. Since

G2(λ, µ; z) = z −
∞∑
n=2

Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

zn

n · n!

by virtue of Lemma 2.1, it suffices to show that

∞∑
n=2

(n− α)(β(n− 1) + 1)
Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

1

n · n!
≤ 1− α. (21)

Let

L3(λ, µ;α, β) =

∞∑
n=2

(n− α)(β(n− 1) + 1)
Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

1

n · n!
.



N. MUSTAFA, O. ALTINTAŞ: NORMALIZED WRIGHT FUNCTIONS WITH NEGATIVE ... 203

We can easily write: (n − α)(β(n − 1) + 1) = n2β + (1 − αβ)n − nβ − (1 − β)α. Hence, by

simple computation, we get

L3(λ, µ;α, β) =
∞∑
n=2

(1− 1

n
)

β

(n− 1)!

Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

+

∞∑
n=2

(1− 1

n
)
1− αβ

n!

Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)

+

∞∑
n=2

1− α

n · n!
Γ(λ+ µ)

Γ(λ(n− 1) + λ+ µ)
.

By using (14) and (15), with µ ≡ λ+ µ, we get

L3(λ, µ;α, β) ≤
∞∑
n=2

β

(n− 1)!

1

(λ+ µ)(λ+ µ+ 1)n−2

+
∞∑
n=2

1− αβ

n!

1

(λ+ µ)(λ+ µ+ 1)n−2

+

∞∑
n=2

1− α

n · n!
1

(λ+ µ)(λ+ µ+ 1)n−2

=
1

λ+ µ
{{[2− (1 + β)α] (λ+ µ+ 1) + β} (λ+ µ+ 1)e

1
λ+µ+1

−{[2− (1 + β)α] (λ+ µ+ 2) + β} (λ+ µ+ 1)} .

We easily see that (21) holds true if the following condition is satisfied:

1

λ+ µ
{{[2− (1 + β)α] (λ+ µ+ 1) + β} (λ+ µ+ 1)e

1
λ+µ+1

−{[2− (1 + β)α] (λ+ µ+ 2) + β} (λ+ µ+ 1)} ≤ 1− α,

which is equivalent to (20).

Thus, the proof of Theorem 4.2 is completed. �

By setting β = 0 in Theorem 4.2 and using the first relationship in (6), we arrive at the

following corollary.

Corollary 4.5. The function G2(λ, µ; z) belongs to the class TS∗(α) (α ∈ [0, 1)) if λ ≥ 1, µ > 0

and the following condition is satisfied:

(1− α)(λ+ µ) + (2− α)(λ+ µ+ 1)(λ+ µ+ 2)− (2− α)(λ+ µ+ 1)2e
1

λ+µ+1 ≥ 0.

By taking α = 0 in Corollary 4.5, we obtain the following corollary.

Corollary 4.6. The function G2(λ, µ; z) belongs to the class TS∗ if λ ≥ 1 and λ + µ ≥ x4.

Here, x4 = 1.1728 is the numerical root of the equation

2x2 + 7x+ 4− 2(x+ 1)2e
1

x+1 = 0.

Proof. Let σ(x) = 2x2 + 7x+ 4− 2(x+ 1)2e
1

x+1 , x > 0. By simple computation, we get

σ′(x) = 4x+ 7− 2(2x+ 1)e
1

x+1 .

From the graphic of this function, we see that σ′(x) > 0 (see Figure 5a).
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Figure 5a. Graphic of y = σ′(x) = 4x+ 7− 2(2x+ 1)e
1

x+1 .

Thus, the function σ(x) is an increasing function.

Also, as it is seen from the graphic of the function σ(x) or from the computational solution

of the equation

2x2 + 7x+ 4− 2(x+ 1)2e
1

x+1 = 0

x4 = 1.1728 is a numerical root of this equation (see Figure 5b and Equation 5).

Figure 5b. Graphic of y = σ(x) = 2x2 + 7x+ 4− 2(x+ 1)2e
1

x+1 .

Equation 5. 2x2 + 7x+ 4− 2(x+ 1)2e
1

x+1 = 0. Computational numerical solution is:

x4 = 1.1728.

Therefore,

(λ+ µ)− 2(λ+ µ+ 1)2e
1

λ+µ+1 + 2(λ+ µ+ 1)(λ+ µ+ 2) ≥ 0

for every λ+ µ ≥ x4.

Thus, the proof of Corollary 4.6 is completed. �
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By setting β = 1 in Theorem 4.2, and using the second relationship in (6), we arrive at the

following corollary.

Corollary 4.7. The function G2(λ, µ; z) belongs to the class TC(α) (α ∈ [0, 1)) if λ ≥ 1, µ > 0

and the following condition is satisfied:

(1− α) [2(λ+ µ+ 1)(λ+ µ+ 2) + λ+ µ] + λ+ µ+ 1

−(λ+ µ+ 1) [2(1− α)(λ+ µ+ 1) + 1] e
1

λ+µ+1 ≥ 0.

By taking α = 0, in Corollary 4.7, we obtain the following corollary.

Corollary 4.8. The function G2(λ, µ; z) belongs to the class TC if λ ≥ 1 and λ+µ ≥ x5. Here,

x5 = 2.2791 is the numerical root of the equation

2x2 + 8x+ 5− (2x2 + 5x+ 3)e
1

x+1 = 0.

Proof. The proof of Corollary 4.8 is very similar of the proof of the above corollaries. Therefore,

the proof of this corollary may be omitted. �

5. Concluding remarks and observations

In our presented investigation, we have systematically studied two new kinds of normaliza-

tion of the Wright function and integrals involving these functions. Our main results obtained

in Theorems 3.1, 3.2, 4.1 and 4.2 are new and their usefulness is shown by deducing several

interesting corollaries and examples. We have also considered relevant connections of our results

with various earlier related results.
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